

OCR Computer Science A Level

2.1.3 Thinking Procedurally
Advanced Notes

www.pmt.education

Specification:

2.1.3 a)

● Identify the components of a problem

2.1.3 b)
● Identify the components of a solution to a problem

2.1.3 c)

● Determine the order of the steps needed to solve a problem

2.1.3 d)

● Identify sub-procedures necessary to solve a problem

www.pmt.education

Identify the components of a problem

In computer science, thinking procedurally makes the task of writing a program a lot
simpler by breaking a problem down into smaller parts which are easier to understand and
consequently, easier to design.

The first stage of thinking procedurally in software development involves taking the
problem defined by the user and breaking it down into its component parts, in a process
called problem decomposition . In this process, a large, complex problem is continually
broken down into smaller subproblems which can be solved more easily. By separating the
problem into sections, it becomes more feasible to manage and can be divided between a
group of people according to the skill sets of different individuals.

This process requires software developers to consider a problem in terms of the
underlying subproblems that need to be solved to achieve the desired result. An adventure
game, for example, might be broken down into the following components:

1. Characters
2. Adventures
3. Enemies

These would then be broken down further, as shown:
1. Characters

Characters’ interactions
Characters’ appearance

2. Adventures
Levels
Backgrounds and settings

3. Enemies
Enemies’ interactions
Enemies’ appearance

Problems are commonly decomposed using top-down design, shown below.

www.pmt.education

This is also known as stepwise refinement, and is the
preferred method used to approach very large problems,
as it breaks problems down into levels. Higher levels
provide an overview of a problem, while lower levels
specify in detail the components of this problem.

The aim of using top-down design is to keep splitting
problems into subproblems until each subproblem can be
represented as a single task and ideally a self-contained
module or subroutine. Each task can then be solved and developed as a subroutine by a
different person. Once programmed, subroutines can also be tested separately , before
being brought together and finally integrated.

Identify the components of a solution

This is the stage in which the details about how each component is implemented are
considered. You will be able to see below how separating out these components has
made it easier to identify a feasible and programmable solution.

In the same way that we broke down the problem, we must also build up to its solution . In
order to identify the components of the solution, each programmer must evaluate the
component of the problem allocated to them and assess how it can best be solved. Going
back to our previous example involving the book reservation system, we need to consider
the lowest-level components .

Borrower name
This could be implemented as a procedure, getName(),
which checks to see whether or not a user is signed-in to
their library account. If they are already signed-in, their
name can be retried by querying the library’s database of
users for the name of the borrower associated with the
borrower’s ID. Users that are not signed-in should be
redirected to a page, requesting them to either register or
sign-in. These options should redirect the user to the
relevant form.

www.pmt.education

Book details
The user should be able to enter the name of the book into a text entry field, which would
display the books stocked by the group of libraries. This could be implemented as a
function which returns the ISBN of the selected book, which is easier to handle and can be
more useful than a string.

Collection location
This input could also be implemented as a function, which returns the location specified by
the user. It is impractical to use a text entry field here, as this raises the likelihood of
erroneous data being entered, such as a location where a library does not exist. Therefore,
this data is best collected through a drop-down field in a form.

Checkbook availability
Another database query would have to be carried out to check whether books under the
selected ISBN are currently on loan or available for borrowing. This problem could be
programmed as a function which returns ‘True’ if the book is available, or ‘False’ if not.

As an exercise, consider the ways in which the two final modules could be implemented.

During this stage, it is also useful to identify tasks which
could be solved using an already existing module,
subroutine or library. Reducing the complexity of the
development stage by picking up on sections in which
reusable components can be used is another benefit of
using top-down design.

Finally, the components of the solution are combined to
form a full, working solution.,

Order of steps needed to solve a problem

When constructing the final solution based on the solutions to the problem components,
thinking about the order in which operations are performed becomes important. Some
programs might require certain inputs to be entered by the user before the processing can
be carried out. These inputs would also need to be validated before they can be passed
onto the next subroutines, which must also be taken into consideration.

It might be possible for several subroutines to be executed simultaneously within a
program, and programmers must identify where this is possible by looking at the data and
inputs the subroutine requires. Some subroutines will require data from other subroutines

www.pmt.education

before they are able to execute, and so will be unable to execute simultaneously. In this
case, programmers should determine the order in which subroutines are executed , as well
as how they interact with each other, based on their role in solving the problem.

Going back to our earlier example involving a book reservation system, it is clear that
certain operations must be performed before others can be performed. Without the user’s
input, the rest of the program cannot execute. There must also be checks in place to
confirm the validity of these inputs before data is passed between subroutines.

The same principle is important when considering how a program will be used. Programs
should be built so as to ensure operations are not carried out in an order that does not
make sense, or will raise an error. Consider an adventure game. It should not be possible
for users to access and play levels ahead of those they have unlocked. A fast food delivery
app should not allow users to select food until they have confirmed their location, nor
should it allow users to pay before they have confirmed their order. Although these things
may seem obvious and natural to us, they must be explicitly written into software for
programs to work in the way we want.

www.pmt.education

